MARE/2016/22 "Strengthening regional cooperation in the area of fisheries data collection" Annex III "Biological data collection for fisheries on highly migratory species"

Strengthening Regional cooperation in the area of large pelagic fisheries data collection (Acronym: RECOLAPE)

# REPORT

# *Xiphias gladius* age reading exchange

**Coordinators:** Pierluigi Carbonara<sup>1</sup> and Fulvio Garibaldi<sup>2</sup>

**Collaborators:** Sergio Bizzarri<sup>3</sup>, Rui Coelho<sup>4</sup>, Mathieu Depetris<sup>5</sup>, Luca Lanteri<sup>2</sup>, Pedro Lino<sup>4</sup>, Pablo Quelle<sup>6</sup>, Aurelie Guillou<sup>5</sup>, Daniela Rosa<sup>4</sup>, Ioannis Thasitis<sup>7</sup>, George Tserpes<sup>8</sup>.

<sup>1</sup>COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare, Bari, Italy
<sup>2</sup>Università di Genova – Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV), Genoa, Italy
<sup>3</sup>UNIMAR Soc. Coop., Roma, Italy
<sup>4</sup>Instituto Português do Mar e da Atmosfera (IPMA)Olhão, Portugal
<sup>5</sup>Institut de Recherche pour le Développement (IRD), France
<sup>6</sup>Instituto Español de Oceanografía (IEO)Centro Oceanográfico de Santander, Santander-Cantabria, Spain
<sup>7</sup>Hellenic Centre for Marine Research (HCMR) Athens, Greece
<sup>8</sup>Department of Fisheries and Marine Research, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus



#### Index

| Exchange exercise                         | 2  |
|-------------------------------------------|----|
| 1.1 Sampling Collection and Participation |    |
| 1.2 Reading procedures and data analysis  | 4  |
| 1.3 Results                               | 6  |
| 3.4 Remarks                               | 10 |
| References                                | 10 |

## Exchange exercise

The ageing analysis, the examination of the protocols and literature (Rodríguez-Marín et al., 2007; Williams et al., 2013; ICCAT 2006-2016; Lanteri and Garibaldi, 2019; Quelle et al., 2014) on the large pelagic stocks showed some gaps on:

- Ageing scheme;
- Ageing criteria;
- Ageing validation study;
- Preparation method.

These aspects affect both the precision and the accuracy (Panfili et al., 2002) of the age estimation for the selected stocks. To overcome these gaps and improve the precision, workshop and reading exchange (ICES, 2011; ICES, 2013; ICES, 2015) are useful tools, while validation studies are the means to improve the accuracy (Campana, 2001). In addition, in the case of swordfish, problems in age estimation using spines can be

summarized in the following main sources of errors:

- Presence of multiple bands and false bands;
- Progressive disappearance of the inner bands in larger specimens.

The Exchange approach based on supporting tools (SmartDots, Eltink sheet, full scale exchange) (PGCCDBS 2011; ICES 2016, ICES 2017) was utilized to highlighted the main source of bias and understand the level of precision of Swordfish

## 1.1 Sampling Collection and Participation

A preliminary step to the exchange was the collection and calibration on a suitable number of HS images (first three ray of the anal fin). The images of prepared spines have been provided by Genoa University and IEO. In total 79 specimens were sampled from 2003 to 2017 in the Mediterranean area (Tab. 1.1.1; Fig. 1.3.1.1).

Table 1.1.1 - Samples distribution of *Xiphias gladius* by the sampling year and area.

| Species    | Areas            | 2003 | 2004 | 2005 | 2007 | 2008 | 2009 | 2010 | 2011 | 2016 | 2017 | Tot. |
|------------|------------------|------|------|------|------|------|------|------|------|------|------|------|
| V. aladius | Ligurian Sea (1) |      |      |      | 2    | 1    | 1    | 1    | 3    | 2    | 54   | 64   |
| A. giadius | Alboran Sea (2)  | 1    | 5    | 9    |      |      |      |      |      |      |      | 15   |
|            | Total            | 1    | 5    | 9    | 2    | 1    | 1    | 1    | 3    | 2    | 54   | 79   |



Figure 1.1.1Map of specimens collected: 1Ligurian Sea; 2 Alboran Sea

The length distribution of *X. gladius* (Fig. 1.1.2) there were from 2 different geographical areas. The specimens of Ligurian Sea included the smallest fish below LJFL range included between 69 and 177 cm. Conversely, the fish from Alboran Sea presented the LJFL range from 102to 213 cm (Fig. 1.1.2). In total there were covered a huge range of LJFL that they included juveniles and adult specimens



Figure 1.1.2 - Length distribution of *X. gladius* used during the exchange by geographical areas

In total 9 readers participated to the reading exchange exercise from 6 country and 7 laboratories (Tab. 1.1.2). The readers included not only readers from the Institutes involved in the RECOLAPE project but also from others Institution, involved in the DCF.

| Table 1.1.2 List of the readers | by | country | and | laboratory | 1 |
|---------------------------------|----|---------|-----|------------|---|
|---------------------------------|----|---------|-----|------------|---|

| Reader | Name             | Country  | Institution         |
|--------|------------------|----------|---------------------|
| 1      | Aurelie Guillou  | France   | IRD                 |
| 2      | Fulvio Garibaldi | Italy    | University of Genoa |
| 3      | Sergio Bizzari   | Italy    | Unimar              |
| 4      | Daniela Rosa     | Portugal | IPMA                |
| 5      | Luca Lanteri     | Italy    | University of Genoa |
| 6      | Rui Coelho       | Portugal | IPMA                |
| 7      | George Tserpes   | Greece   | HCMR                |
| 8      | Ioannis Thasitis | Cyprus   | DFMR                |
| 9      | Pablo Quelle     | Spain    | IEO                 |

#### 1.2 Reading procedures and data analysis

To all readers were asked to read each digitised images with their own interpretation (positions of the annual rings on a given transect) using the program SmartDOT platform (http://www.ices.dk/marine-data/tools/Pages/smartdots.aspx). SmartDOT is a new set of software tools supports the user in managing all data of ICES age reading

workshops and exchanges. The workshop or exchange manager can manage the meta data related to workshops and exchanges, and the age reader can carry out age readings by annotating HS images. All registered data are available in the connected reporting environment.

The instructions, how to use this software in the context of this exchange, are reported in the Annex 1.

The age was assigned taking into account the number of the transparent rings the date of birthday and the edge type. Moreover the date of capture and the sex were visible by the readers. Then the age for each specimen was assigned following the scheme reported in the Table 3.1.3

| Date of Caprure | Age                          | Edge       |
|-----------------|------------------------------|------------|
| 1th comostor    | N of ring + Internal ring    | Trasparent |
| TUISemester     | N of ring +1 + Internal ring | Opague     |
| 2th compostor   | N of ring + internal ring    | Opaque     |
| zth semester    | N of Ring + internal ring    | Trasparent |

Table 1.1.3 - Age scheme used during the exchange

All data were extracted from SmartDOT and analysed using the GuusEltink spreadsheet (Eltink, 2000). The spreadsheet (Eltink, 2000) was completed according to the instructions contained in Guidelines and Tools for Age Reading Comparisons by Eltink et al. (2000). Modal ages were calculated for each spine red, with percentage agreement (PA), coefficient of variation (CV) and average percent error (APE), as a definition (for each spines):

$$PA = \frac{\sum \left| n_{diff} \le 1 \right|}{n}$$
$$CVj(\%) = 100. \frac{\sqrt{\sum_{i=1}^{R} \frac{(X_{ij} - X_j)^2}{R - 1}}}{x_j}$$

Where R is the number of times each fish is aged, Xij the i(th) age determination of the j(th) fish, Xj is the mean age calculated for the j(th) fish, and ndiff is the difference in age determination between the readings of two readers.

$$APEj(\%) = 100.\frac{1}{R} \sum_{i=1}^{R} \frac{|Xij + Xj|}{Xj}$$

Where xij is the ith age determination of the jth fish, x j is the average age calculated for the jth fish and R is the number of times each fish was aged.

#### 1.3 Results

In the analysis were utilized the data from all readers and the precision analyse with CV, APE and percent of agreement to modal age for *X. gladius* spines sets was presented in the Table 3.3.1. All data showed the low precision with the percent agreement between 52.7 and 67.2%, the CV from 33.9 to 17.8% and the APE from 22.7 and 24.4%. For the all samples together the CV, APE and percent of agreement to modal age were respectively: 30.8%, 23 and 64.4%.

#### Table 1.3.1 - Reading's precision for X. gladius by sampling area

| Species    | Geographical area | Otoliths<br>Spine | Length LJFL<br>Range (cm) | Age range<br>(year) | Percentage of<br>Agreement | сv    | APE   |
|------------|-------------------|-------------------|---------------------------|---------------------|----------------------------|-------|-------|
|            | Ligurian Sea ITA  | 64                | 69/177                    | 0/7                 | 67.2%                      | 33.9% | 22.7% |
| X. gladius | Alboran Sea SPA   | 15                | 160/213                   | 1/9                 | 52.7%                      | 17.8% | 24.4% |
|            | TOTAL             | 79                | 69/213                    | 1/9                 | 64.4%                      | 30.8% | 23%   |

Moreover the precision indices (PA, CV and APE) not showed significant differences (Kruskal–Wallis test; p>0.05) if they were stratified by readers' experience (Expert >500 spines read; Basic < 500 spines read) (Tab. 1.3.2).

Table 1.3.2 - Reading's precision for X. gladius by sampling area

| Species    | Expertise | Percentage of<br>Agreement | сv    | APE   |
|------------|-----------|----------------------------|-------|-------|
|            | Expert    | 65.1%                      | 30.9% | 21.6% |
| X. gladius | Basic     | 64.2%                      | 30.5% | 24.7% |
|            | TOTAL     | 64.4%                      | 30.8% | 23%   |

The coefficient of variation (CV), percent agreement and the standard deviation (STDEV) are plotted against MODAL age (Fig. 1.3.1). The results show a decrease trend from the lower age groups to the higher one for PA and STDEV and the opposite trend for the CV. These results could be explained by the position of the first growth increment (Quelle et al., 2014) and the overlapping the growth increments in the older specimens

(Lanteri and Garibaldi, 2019). In general after the first age groups was observed a decrease of the agreement, the increment of STDEV and a constant CV around the 20%.



Figure 1.3.1 - The coefficient of variation (CV), percent agreement and the standard deviation (STDEV) are plotted against MODAL age.

The percentage of agreement by readers weighed by the number of samples read are included between 38% to 79.5% (Table 1.3.3). Moreover the PA by age group shows a negative trend passing from 72% for the age 0 to 33% for the age 8.

|               | PERC  | ENTAG  | E AGR | EEME  | NT       |       |          |        |        |       |       |
|---------------|-------|--------|-------|-------|----------|-------|----------|--------|--------|-------|-------|
|               | MODAL | France | Italy | Italy | Portugal | Italy | Portugal | Greece | Cyprus | Spain |       |
|               | age   | AG     | FG    | SB    | DR       | LL    | RC       | GT     | IT     | PQ    | ALL   |
|               | 0     | 0%     | 100%  | 75%   | 100%     | 100%  | 0%       | 100%   | 75%    | 100%  | 72%   |
|               | 1     | 0%     | 100%  | 100%  | 67%      | 78%   | 56%      | 89%    | 78%    | 100%  | 74%   |
|               | 2     | 50%    | 33%   | 45%   | 91%      | 75%   | 83%      | 100%   | 73%    | 36%   | 65%   |
|               | 3     | 36%    | 68%   | 57%   | 77%      | 68%   | 77%      | 74%    | 68%    | 50%   | 64%   |
|               | 4     | 33%    | 60%   | 57%   | 87%      | 93%   | 87%      | 70%    | 77%    | 60%   | 69%   |
|               | 5     | 50%    | 60%   | 40%   | 80%      | 80%   | 80%      | 63%    | 50%    | 30%   | 59%   |
|               | 6     | 100%   | 50%   | 100%  | 50%      | 50%   | 100%     | 0%     | 50%    | 0%    | 59%   |
|               | 7     | 75%    | 25%   | 0%    | 50%      | 25%   | 25%      | 0%     | 67%    | 75%   | 42%   |
|               | 8     | 100%   | 0%    | 0%    | 100%     | 0%    | 0%       | 0%     | 100%   | 0%    | 33%   |
|               | 9     | -      | -     | -     | -        | -     | -        | -      | -      | -     | -     |
| Weighted mean | 0-9   | 38.0%  | 62.0% | 58.1% | 79.5%    | 74.7% | 70.9%    | 75.4%  | 69.3%  | 55.1% | 64.6% |

Table 1.3.3 Percentage of agreement by readers and age group.

Relative bias can be defined as a systematic over- or underestimation of age compared to the modal age. In the results of the exchange the bias are higher in the first two age groups (age 0 and age 1) reaching about 0.4 year and in the last age group where the bias reach about 0.6 year (Fig. 1.3.2).





Figure 1.3.2 - The RELATIVE bias by MODAL age as estimated by all age readers combined

The hypothesis of an absence of bias between two readers or between a reader and the modal age estimated was tested non-parametrically with a one-sample Wilcoxon signed rank test. The results of the test (Fig. 1.3.3) highlighted that there is a group of readers that not show significant difference among them and with modal age.

| Inter-reader bias test and reader against MODAL age bias test |        |       |           |              |                                                                       |          |        |        |       |
|---------------------------------------------------------------|--------|-------|-----------|--------------|-----------------------------------------------------------------------|----------|--------|--------|-------|
|                                                               | France | Italy | Italy     | Portugal     | Italy                                                                 | Portugal | Greece | Cyprus | Spain |
|                                                               | AG     | FG    | SB        | DR           | LL                                                                    | RC       | GT     | IT     | PQ    |
| Reader AG                                                     |        |       |           |              |                                                                       |          |        |        |       |
| Reader FG                                                     | **     |       |           |              |                                                                       |          |        |        |       |
| Reader SB                                                     | **     | _     |           |              |                                                                       |          |        |        |       |
| Reader DR                                                     | **     | *     | **        |              |                                                                       |          |        |        |       |
| Reader LL                                                     | **     | **    | **        | _            |                                                                       |          |        |        |       |
| Reader RC                                                     | **     | *     | **        | _            | -                                                                     |          |        |        |       |
| Reader GT                                                     | **     | *     | _         | _            | _                                                                     | *        |        |        |       |
| Reader IT                                                     | **     | **    | **        | _            | _                                                                     | _        | *      |        |       |
| Reader PQ                                                     | **     | _     | _         | **           | **                                                                    | **       | **     | **     |       |
|                                                               |        |       |           |              |                                                                       |          |        |        |       |
| MODAL age                                                     | **     | *     | **        | _            | *                                                                     | -        | -      | _      | **    |
|                                                               |        |       |           |              |                                                                       |          |        |        |       |
|                                                               |        | _     | = no sig  | n of bias (  | p>0.05)                                                               |          |        |        |       |
|                                                               |        | *     | = possib  | ility of bia | as (0.01 <p< th=""><th>&lt;0.05)</th><th></th><th></th><th></th></p<> | <0.05)   |        |        |       |
|                                                               |        | **    | = certair | nty of bias  | (p<0.01)                                                              |          |        |        |       |

Figure 1.3.3 - Inter-reader bias test and reader against modal age bias test of *X. gladius* spines.-: no sign of bias (p>0.05); \*: possibility of bias (0.01 ); \*\*: certainty of bias (<math>p<0.01)

11 images of the all sample (79 images) presented an agreement  $\geq$  80% (Tab. 1.3.4). These are from the lower age groups (age group 1, 3 and 4) and they could be represented the base for the age reference collection of the swordfish spines.

| Criterion 80% agreement |    |  |  |  |  |
|-------------------------|----|--|--|--|--|
| MODAL AGE               | n  |  |  |  |  |
| 0                       | 0  |  |  |  |  |
| 1                       | 4  |  |  |  |  |
| 2                       | 0  |  |  |  |  |
| 3                       | 3  |  |  |  |  |
| 4                       | 4  |  |  |  |  |
| 5                       | 0  |  |  |  |  |
| 6                       | 0  |  |  |  |  |
| 7                       | 0  |  |  |  |  |
| 8                       | 0  |  |  |  |  |
| 9                       | 0  |  |  |  |  |
| 10                      | 0  |  |  |  |  |
| 11                      | 0  |  |  |  |  |
| 12                      | 0  |  |  |  |  |
| 13                      | 0  |  |  |  |  |
| 14                      | 0  |  |  |  |  |
| 15                      | 0  |  |  |  |  |
| 16                      | 0  |  |  |  |  |
| 17                      | 0  |  |  |  |  |
| 18                      | 0  |  |  |  |  |
| 19                      | 0  |  |  |  |  |
| 20                      | 0  |  |  |  |  |
|                         | 11 |  |  |  |  |

Table 1.3.4 – The number of images with an agreement  $\geq$  80% by modal age.

Plotting the mean length by age group and readers (Fig. 1.3.4) seems clear that the mean length of the first 6 age groups (from age 0 to age 5 years) are comparable for the mostly of the readers. So this could be explained by the relative easiness to recognize the first growth increments.



Figure 1.3.4 - The mean length at age as estimated by each age reader.

#### 3.4 Remarks

The exchange exercise was based on a total of 79 fish sampled from 2003 to 2017 in Mediterranean from 2 sites sample: Ligurian sea and Alboran Sea. The pictures of HS (spines of the anal fin) tin section were prepared in the same way (Quelle et al., 2014; Lanteri and Garibaldi, 2019). The overall precision are PA, CV and APE respectively of 64.4%, 30.8% and 23%. These value are respectively lower and higher than those considered acceptable: 80% PA and 20% CV (PGCCDBS 2011). Moreover they were no significantly different if they were stratified by readers' experience, so this factor not explained fully the low PA and high CV reach in this exchange exercise. The analysis of the older one. In addition, the bias analysis on the all data seems highlight an underestimation for the older age group, while an overestimation for the first age group (0 and 1 year). These results could be explained by the difficult to recognize the first growth increment and mostly growth increments (overlapping of the rings) in the older fish (age > 5 years).

The comparison of the age readings among the readers and each reader with modal age highlighted that a groups of readers follow a same age criteria. These results are confirmed also of the mean length at age as estimated by each age reader. Indeed in the first 6 age groups (from age 0 to age 5 years) the mean length at age are comparable for the mostly of readers. All these results were discussed during the next workshop.

### References

Campana, S. E. 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol, 59(2):197-242.

Eltink, A.T.G.W. 2000.Age reading comparisons. (MS Excel workbook version 1.0 October 2000) Internet: <u>http://efan.no</u>.

ICCAT. 2006-2016. ICCAT Manual. International Commission for the Conservation of Atlantic Tuna. In: ICCAT Publications [on-line]. Updated 2016.

ICES. 2011. Report of the Workshop of National Age Readings Coordinators (WKNARC), 5-9 September 2011, Boulogne-sur-Mer, France. ICES CM 2011/ACOM:45. 175 pp.

ICES. 2013. Report of the Second Workshop of National Age Readings Coordinators (WKNARC2), 13 - 17 May 2013, Horta, Azores. ICES CM 2013/ACOM:52. 65 pp.

ICES 2015. First Interim Report of the Working Group on Working Group on Biological Parameters (WGBIOP), 7-11 September 2015, Malaga, Spain. ICES CM 2015/SSGIEOM:08. 67 pp.

ICES. 2016. Report of the Working Group on Biological Parameters (WGBIOP), 10–14 October, 2016, Monopoli, Italy. ICES CM 2016/SSGIEOM:08. 106 pp

ICES. 2017. Report of the Working Group on Biological Parameters (WGBIOP), 2–6 October 2017, Sardinia, Italy. ICES CM 2017/SSGIEOM:08. 129 pp.

Lanteri L., Garibaldi F. 2019 Large Pelagic Fish. In Carbonara, P., Follesa, M.C., eds. 2019. Handbook on fish age determination: a Mediterranean experience. Studies and Reviews. No. 98. Rome, FAO. 2019 111-145.

Panfili J., de Pontual H., Troadec J.-P., Wright P.J. (eds.) (2002). Manual of fish sclerochronology. Brest, France: IFREMER-IRD co-edition, 464pp. ISBN 2-7099-1490-5

PGCCDBS 2011 Guidelines for Otolith Exchanges, Vienna 9pp

Quelle, P., González, F., Ruiz, M., Valeiras, X., Gutierrez, O., Rodríguez-Marín, E. and Mejuto, J. 2014. An approach to age and growth of South Atlantic Swordfish (Xiphias gladius) stock. ICCAT Coll. Vol. Sci. Pap. Vol. 70(4): 1927-1944.

Rodríguez-Marín E., N. Clear, J.L. Cort, P. Megalofonou, J.D. Neilson, M. Neves dos Santos, D. Olafsdottir, C. Rodriguez-Cabello, M. Ruiz, J. Valeiras 2007 Report of the 2006 ICCAT workshop for Bluefin Tuna direct ageing. Col. Vol. Sci. Pap. ICCAT, 60(4): 1349-1392.